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Abstract—The effect of the interfacial mass velocity normal to surfaces undergoing heterogeneous reaction
on the apparent kinetics of such reactions is quantitatively investigated. A simple algebraic model is
developed which enables all pertinent non-dimensional reaction-rate coefficients to be obtained over the
entire range from reaction rate (“‘chemical™) control to diffusion control for one-step irreversible hetero-
geneous reactions of arbitrary kinetic order. Illustrative results are presented for the case of turbulent
boundary layers on flat surfaces undergoing first-order reaction. The effect of this interfacial flow (the
Stefan—Nusselt flow) is found to be significant whenever the reaction rate is not completely chemically
controlled and the quantity [In (1 + Bgy)]/Bays departs appreciably from unity, where By is a diffusion-
controlled dimensionless mass-transfer parameter obtainable a priori in terms of the reactant mass fraction
in the feed and the reaction stoichiometry. The Stefan—Nusselt flow is found to (i) destroy the time-honored
notion that diffusional limitations ultimately cause all surface reactions to masquerade as first order reac-
tions, (ii) introduce a connection between the profile drag on reacting surfaces and the true kinetics of the
reaction and (iii) leave unaltered the form of a potentially useful relation between the power required to
maintain a reacting surface at a prescribed temperature and the true kinetics of the chemical reaction at that
temperature. Applications of the theory to specific heterogeneous reactions (e.g. oxidation, chlorination,
chemical vapor plating) are facilitated by the compilation of representative values of the mass-transfer
parameter Bye,. The errors committed by neglecting the Stefan—Nusselt flow are discussed for two cases of
current interest, viz. the high temperature oxidation of graphite and molybdenum in air. The results of the
theory are presented and discussed in such a way as to emphasize their generality as well as the physico-
chemical conditions under which simple computational procedures are likely to be acceptable.

NOMENCLATURE

reactant diffusion in the prevailing

A, wetted area of surface; mixture, cf. equation (5);

b, constant appearing in equation (7) 2, profile drag defined by equation (42);
which determines sensitivity of the E, activation energy, equation (23);
Stanton number to interfacial mass —ji, diffusional mass flux of species i to-
transfer; ward surface, cf. equation (5);

B, dimensionless mass-transfer para- k,, pre-exponential factor appearing in
meter defined by equation (6); equation (23);

c, species mass fraction, or cg ./Cz, e k,, true chemical rate constant, defined by
cf. equation (13); equation (2);

s skin-friction coefficient defined by k.. apparent rate constant, defined by
equation (41); equation (20); ‘

Cpy specific heat of fluid per unit mass; L, characteristic length (of surface);

D, effective Fick diffusion coefficient for m, pressure-gradient parameter,

dinu,/dInx;

* Subsidiary of Ritter Pfaudler Corp. m’, interfacial mass flux, cf. equation (3);
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molecular weight, cf. equation (38);
n, reaction order, cf. equation (2);

n,, “order” with respect to surface area,
defined by equation (29);
ny, “order”” with respect to flow velocity,

defined by equation (28);
P, symbol for product species ;

Pr, Prandt] number for heat conduction;
Prp,  Prandtl number for diffusion, =v/D;
0, chemical heat release per unit mass of
reactant (R) consumed;
2, power requirement to maintain given
surface temperature, cf. equation (44) ;
r, stoichiometric mass ratio, defined by
equation (1);
R, symbol for reactant species;
R, universal gas constant, cf. equation
(23);
St, Stanton number, defined by equation
(5);
S, symbol for surface species ;
T, absolute temperature;;
t, time;
u, component of fluid velocity parallel
to surface;
U, characteristic velocity (e.g. velocity of
approach stream);
W, chemical source term for species i at
the interface [g/cm? s];
W, symbol for the element tungsten ;
X, streamwise distance along surface;
¥, distance normal to surface;
z, stretched dimensionlessdistancealong

surface, defined by equation (14);
z, [(w — D/w]z.

Greek Symbols

B, generalized pressure gradient para-
meter, cf. equation (38);

d, diffusion boundary-layer thickness;

¢, dummy variable, equation (21);

n, normalized local reaction-rate co-
efficient, defined by equation (15);

1, overall effectiveness factor,

= WR/WR, chem = m/mchem >
v, kinematic viscosity of fluid ;
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g, dummy variable, equation (42);

P fluid density ;

Toos local skin friction (shear stress), cf.
equation (42);

o, local reaction-rate coefficient, defined
by equation (18);

é, overall reaction-rate coefficient, cf.
equation (22);

w, diffusion boundary-layer growth para-

meter, defined by
w = (d ln 5B=O/d lnX)— l.

Subscripts

a, apparent (observed);

chem, pertaining to chemical control
(cw = ¢o);

diff,  pertainingtodiffusioncontrol(c, —0);

eff, effective value, cf. equation (38);

D, pertaining to species transport ;

e, at outer edge of the diffusion boundary
layer;

W, at reactive surface;

R, pertaining to reactant R ;

B =0, pertaining to the case of zero inter-
facial mass flux;

ref, reference value, cf. equation (38).

Miscellaneous

9), gaseous species, cf. equation (37);

(s), condensed phase, cf. equation (37);

O(1), of order unity, i.e. not very different
from unity.

INTRODUCTION

CHeMICAL kinetic studies of rapid heterogeneous
reactions are frequently complicated by the inter-
vention of diffusional limitations (on reactant
supply, product escape, heat removal) which
introduce a dependence of the observed reaction
rates on fluid dynamic and transport parameters
[4, 27, 30]. However, these physical phenomena
need not preclude the inference of reaction-rate
parameters if the reactor behavior is well under-
stood from a theoretical point of view. Indeed,
fast-flow reactors in which both transport and
kinetic processes play an important role enable
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the kinetic study of surface reactions which
simply could not be studied in a static system at
reactant partial pressures and surface tempera-
tures of interest. Recognition of this fact has
motivated the author’s previous quantitative
studies of the apparent kinetics of surface-
catalyzed reactions in flow systems [27, 29, 30,
34]. In addition, an understanding of these
phenomena is necessary to design large reactors
whose surfaces operate in this interesting transi-
tion region between kinetic and diffusion control.

Previous studies of this regime have been
concerned, for the most part, with surface-
catalyzed reactions as opposed to heterogeneous
reactions in which the solid materialis a bonafide
reactant. This has simplified previous analyses
since the absence of a net mass transfer at the
fluid/solid interface ensures the applicability of
a vast amount of fluid-dynamic and heat-
transfer information available from earlier
studies on nonreactive surfaces. However, there
is a need for comparable analyses of the behavior
of more general reactions in which there is a
nonzero net mass transfer, and hence, a normal
mass-averaged velocity (the so-called Stefan—
Nusselt flow) at the boundary. In addition to
defining the limits of validity of the previous
work (when applied to such reactions) a more
comprehensive theory can be useful in antici-
pating new phenomena, suggesting more general
correlation procedures, and, ultimately, en-
abling the extraction of accurate reaction-rate
parameters from measurementis made in the
“exchange of control” regime. The present
simplified treatment is intended as a first step in
this program. As such, an attempt has been made
to introduce a general algebraic model (at the
expense of some accuracy) which will bring out
the essential new features of this class of reac-
tions in a unified way. More accurate treatments
are thus anticipated (particularly for laminar
boundary-layer flows, and for fractional-order
surface reactions forming volatile products)
but these must of necessity contain the pheno-
mena described herein, and will probably be
best described in terms of the dimensionless
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variables found useful in the present analysis.
In many cases, however, more accurate treat-
ments with some pretense of generality will not
be justified because numerous complications are
associated with specific surface reactions which
would be difficult to adequately account for
(e.g. geometry changes during reaction, variable
property effects due to the formation of heavy
product molecules, product condensation within
the cooler parts of diffusion boundarylayers, etc.).
Further remarks on these and other complicating
phenomena are best postponed to the Discussion
section. As in all problems, preoccupation with
difficulties at too early a stage would discourage
even an attempt at a comprehensive theory.

APPROXIMATE
PHYSICOCHEMICAL-HYDRODYNAMIC MODEL

We consider the quasi-steady, constant pro-
perty boundary-layer flow of a fluid over a re-
active surface S (Fig. 1). Contained in the fluid
is a reactant R which diffuses to the surface and
reacts there* with S to form the product P in
accord with the stoichiometry :

lgram S +rgram R — (1 + r)gram P. (1)

The product P may volatilize (or dissolve) and
enter the fluid boundary layer, or, alternatively,{
may adhere to the surface and possibly impede
further progress of the reaction. In either event
an interfacial mass velocity (the Stefan—Nusselt
flow) is established normal to the surface as a
result of these mass-transfer processes. Our
object here is to incorporate the major effects
of this velocity on the convective-transfer co-
efficients and hence, the steady-state reaction
rate in the regime in which both kinetic and trans-
port factors influence the observed reaction
rates. Having done this, it will then be possible

* Reactions in the fluid phase are not considered here.

t As will be discussed later on, the theory outlined hére is
readily extended to the class of vapor-deposition (plating)
reactions in which reactant R is heterogeneously decom-
posed into two (or more) products P,, P,, ..., some of which
are volatile, and some of which are adherent.
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FIG. 1. Schematic of physicochemical model.

to investigate the apparent chemical kinetics of
such reactions, i.e. the kinetics as they would
appear to an observer unaware of the inter-
vention of these transport phenomena [27, 29,
30, 34].

PHENOMENOLOGICAL KINETIC MODEL

For many surface reactions of practical inter-
est the rate of reactant consumption at the sur-
face is found to depend on a power of the local
reactant concentration, and is independent of
the local reaction-produced concentration. Con-
sidering this case,* for a constant surface-
temperature system, we write the mass rate of
reactant consumption — Wy (per unit geometric
surface area) as

W; = —kw ’ (pCR, w)'l (2)
where n is the (true) reaction order, k,, is the (true)
reaction-rate constant and cg ,, is the reactant
mass fraction prevailing at the gas/solid inter-
face. In accord with the stoichiometry, this rate
of consumption will produce a net mass flux

m' = (1/r)k,, - (pcg,w)" 3)

directed away from the surface when the (only)
product P is volatile, or a net mass flux

m” = - kw ’ (pCR,w)'l (4)

* That is, reactions which are effectively irreversible.
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directed toward the surface when the (only)
product P is nonvolatile.*

FLUID DYNAMIC MODEL

If one defines a local convective transfer co-
efficient (the Stanton number), St(x), using the
relation

Dp(acR/ay)yZO = peueSt . (CR, e C’R.w)
= —jr (5)
then an exact theory must account for

(i) the effects of both the local and upstream
mass transfer rate m”’ on the local value of
St;

(ii) the effects of both the local and upstream
variations in the diffusional driving force

Cr.e — Cgr,. ON the local value of St.

In the approximate theory presented here the
effect of the local value of the mass flux m” on
the local value of the Stanton number will be
accounted for, but the remaining phenomena
are neglected. With regard to the mass-transfer
effect this is equivalent to a local similarity
approximation, the accuracy of which has been
discussed [43] for particular cases (none of which
deal with surface reactions, however). Neglecting
the influence of the actual diffusional driving-
force history for this class of problems is equiva-
lent to the well-known quasi-stationary approxi-
mation, extensively exploited by Frank-Kame-
netskii [12]. The accuracy of this approxima-
tion when applied to surface-catalyzed reactions
has been the subject of recent investigation by
the writer [ 26, 27, 29, 30, 33, 34] and others [ 1, 6,
8,9, 13, 15, 25, 36]. As indicated in [30], for
surface reactions with nonzero Stefan—Nusselt
flow, its accuracy remains to be explored. How-
ever, we anticipate (see Discussion section) that

*In the latter case the rate constant k,, appearing in equa-
tion (2) may be a decreasing function of time, reflecting the
partially protective role of the adherant, inert product film
on the reactive surface S. This film may, alternatively, be a
liquid which runs off the surface, as in the oxygen cutting of
metals [39, 42]. However, for the oxidation of many materials
(e.g. Mg(s), Ca(s), Ce(s), U(s)) the product film, although solid,
is sufficiently porous to be completely nonprotective.
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the errors will be smallest for turbulent boun-
dary-layer flows with diffusional Prandtl num-
bers of order unity, for reactions orders, n near (or
larger than) unity, and for surface reactions
characterized by negative or small positive inter-
facial mass fluxes.

As has been especially emphasized by the work
of Spalding [37-42], it is convenient to discuss
the effects of mass transfer on the boundary layer
in terms of a dimensionless mass-transfer para-
meter, B, defined by

B = n"/pu, " St. (6)

Several investigators [ 11, 14, 20, 21] have shown
that, for boundary layer flows, the effect of inter-
facial mass transfer on the magnitude of St is
accurately* given by an implicit relation of the
simple form

St/Sty o = (1 + bB)™! (7

where the constant b is dependent on the type of
boundary layer (laminar or turbulent) and is
only weakly dependent on the diffusional Prandtl
number. As will be seen (see Discussion section),
b is a number typically near }, being somewhat
larger for most laminar boundary-layer flows
and smaller for turbulent boundary-layer flows.
Equation (7) expresses the well known fact that
“blowing” (B > 0) reduces the Stanton number,
whereas “suction” (—1 < B < 0) increases it.
The Stanton number in the absence of mass
transfer, written Stg_,, is available from numer-
ous theoretical and experimental boundary-
layer studies of heat transfer (or mass transfer
for B =~ 0) in nonreactive situations.

REACTANT CONSERVATION AT THE
FLUID/SOLID INTERFACE
The central equation in the present theory is
that expressing reactant conservation at the
fluid/solid interface. Figure 2 shows a control

* The accuracy degenerates, however, as one approaches
the limit B —» ~—1. In this extreme St/Stz_o ~ (1 + B)™%
for laminar boundary-layer flows [2, 3, 38].

T Equation (7) is equivalent to the frequently cited explicit
relation: St/Stg_o, = 1| — b(m""/pu.Stz-,).
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FIG. 2. Reactant conservation at the fluid/solid interface.

volume (“‘pillbox”’) which moves in such a way
as to always straddle the interface. Relative to a
coordinate system fixed with respect to this inter-
face, one notices convective fluxes as well as
diffusive fluxes at the interface. In the steady
state (no accumulation of reactant within the
control volume) the net influx of reactant per unit
area: —ji , — m’cg ,, (comprised of a diffusive
and convective term) must be equal to the net
rate of reactant consumption, —w%. Thus, the
conservation relation may be written:

peue'St.(CR,e - cR,w) ’

- m”CR,w =

kw ' (pCR, w)n (8)

where m” and the reactant *“‘sink™ term —wjy
(right-hand side) are related in accord with
equations (2-4). An important limiting case
occurs when the steady-state reactant concentra-
tion at the wall, cg ,,, becomes negligible (com-
pared to cg ) due to the rapidity of the surface
reaction and/or poor conditions of convective
diffusion. In this case, which we call the diffu-
sion-controlled limit, the convective term
—m"cg,,, drops out of equation (8) and we are
left with
iitgige
peue ' StB:Bdiff ) cR,e = or (9)
- rhgif f

where the choice of the right-hand side depends

on the volatility of the product P (see above).
Introducing the definition of the dimension-
less mass-transfer parameter B it follows that,
for volatile reaction products,
Byir = Cr.o/7

(10)
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whereas, for nonvolatile products

Biier = —Cr.e (11)

Since the reactant mass fraction at the outer edge
of the boundary layer, c ., cannot exceed unity
(this limit being obtained in the absence of a
“carrier” fluid) we see that for the present class
of surface reactions.

—1< By < Ur. (12)

The fact that the parameter, B¢, which governs
the severity of the Stefan—Nusselt flow effect in
any particular system, depends linearly on the
undisturbed stream-reactant mass fraction ob-
viously justifies the often quoted result that this
effect is minimized by reactant dilution.*

CALCULATIONS OF STEADY-STATE REACTION
RATE DISTRIBUTIONS

For most geometries of interest, the conditions
of convective diffusion are not equally good at
all points along the reactive surface, i.e. St has
an appreciable dependence on the position x
along the surface. For this reason alone a transi-
tion from near reaction-rate control rate to near
diffusion control can occur along a single, iso-
thermal surface [30]. Thus, in convective flow
environments overall surfaces generally be-
have like integral reactors comprised of a series
of back-to-back differential reactors, each of
which operates somewhere between the ex-
tremes of reaction-rate control and diffusion
control. We illustrate this behavior later on for
the case of (non-blunted) surfaces having the
property that St(x) is large enough for small x
so that the leading (or inlet) region always oper-
ates chemically controlled,t 1.e. ¢g,, = ¢z
locally.

* Several investigators [2, 7] imply that these effects will
be important for surface-catalyzed reactions. However, for a
surface-catalyzed reaction (e.g. H atom recombination on
solid surfaces) the net mass flux, " vanishes despite the fact
that the reactant consumption rate, —wk, is nonzero. Thus
{cf. equation (3)] r is infinite and By, = 0.

T Quantities evaluated in the chemically controlled ex-
treme will be denoted hereafter by the subscript chem.
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To treat this problem with some generality
our previous work [27, 29, 30] suggests that it
will prove convenient to introduce the following
dimensionless quantities:

(13)
(14)

€ = Crow/Cr.e
zZ = kw ’ (pCR. e)n/peue ) StB=0(x)cR.e
n= WK(X)/W; chem — c". (15)

Here c is a normalized local reactant concentra-
tion, z is a stretched distance along the surface
(proportional to the local diffusion boundary-
layer thickness d(x) on a nonreactive surface of
the same geometry), and # is a normalized local
reaction rate. The steady-state reactant conser-
vation equation (8), and equations (2-4, 10, 11)
can then be combined to yield the simple result
z={(1 = ¢)c™" {1 + Byglc

+ b1 -]} (16)
which implicitly defines the steady-state react-
ant concentration distribution ¢(z ; n, B) along
the surface, and, through equation (15), the
steady-state reaction-rate distribution, w(z; n,
B;), along the surface. To this solution there
corresponds a steady-state distribution of the

mass transfer parameter B, obtained, a posteriori,
from:

B/Byiee = zn/(1 — bByizn). (17)

It will be noted that B(z) approaches B, as
z — oo since the normalized reaction rate falls
off like n ~ [(1 + bBgg)z] ! in this limit.

One further dimensionless reaction-rate vari-
able of interest is

G = Wr/Wg_aiee =M Mg (18)
which is a measure of the approach to local
diffusion control along the surface. Using the

preceding definitions we obtain the interrela-
tion:

¢ = (1 + bBy)zn.

Thus, a simple algebraic equation, equation
(16), contains all relevant information on the
steady state distributions of reactant concentra-
tion, reaction rate, transfer coefficient, etc.,

(19)
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along reactive surfaces. Equation (16) also con-
tains, as a special case (By;;s = 0), the previously
discussed [ 30] quasi-stationary equation govern-
ing external diffusion effects in heterogeneous
catalysis.

SURFACES VIEWED AS INTEGRAL REACTORS

By adding up the contributions of the reaction
rate at each point, wi(x), we obtain the total
reaction rate wy for the surface in question. In
any case it is of interest to compare this rate to
the two calculable* extreme rates. The first of
these is the rate wg_ ., which would exist if the
reaction were everywhere chemically controlled.
The second is the rate wg_ s Which would exist
if the reaction rate were everywhere diffusion-
limited. These comparisons define two dimen-
sionless reaction-rate coefficients # and @,
analogous to n and ¢. As discussed in [29, 30]
the factor #f = Wg/Wg chem €an be viewed in two
distinct ways. Since the rate Wy cpen is linearly
related to the wetted surface area 4, the product
1A may be regarded as an effective surface area
operable in the presence of the diffusional limi-
tation (hence, the name effectiveness factor for
7). Alternatively, if one defines an apparent re-
action-rate constant, k,, ., by the expression

w, @

kw,o = (—Wr)(pcg,.)'A (20)

(cf. equation (2)) then # may be interpreted as
the ratio of this apparent reaction-rate constant
to the true specific reaction-rate constant k..
In what follows we briefly consider the calcula-
tion of f for a particular class of boundary-
layer flows which will be referred to later in the
numerical examples.

For many geometries of interest the Stanton
number Stz_, varies as a simple power of the
streamwise distance x, corresponding to a diffu-
sion boundary-layer thickness, §5z., which also

* For the present we assume the true kinetic constants of
the reaction are known. In applying the theory one may invert
the procedure and determine these constants from those
reaction-rate coefficients which are experimentally acces-
sible.
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varies as a power of the distance x. If, say,
dp-o ¢ xV/? (w = 2, 5 for laminar and turbulent
boundary layers, respectively) and the stream-
wise variation of b can be neglected, we can
readily obtain # from the solutions for the local
reaction rate distribution y(z; n, By;y) outlined
in the previous section. The required relation is*

=z g) 0 n, Bagdol® ™1 e (21)

Upon carrying out this integration the reaction
rate coefficient ¢ = Wp/Wr gicc = M/higy 18
readily obtained from 7. In fact, if one defines?
Z = [(w — 1)/w]z then ¢ may be expressed

5 =(1 + deiff)Eﬁ

which is identical in form to equation (19).

(22)

FALSIFICATION OF KINETICS DUE TO
TRANSPORT LIMITATIONS

Together with the reduction in the apparent
rate constant, there is an accompanying reduc-
tion in apparent activation energy, as well as a
deviation between the true and apparent reaction
order. General quantitative expressions for these
important deviations, obtainable using the
approach of [27, 29, 30, 34], are given and dis-
cussed below.

Consider the class of reaction-rate constants
of the two-parameter Arrhenius form:

k, = ko exp [~ E/(RT,)] (23)

where the pre-exponential factor, kg, is a con-
stant, and the ratio of the true activation energy,
E, to the universal gas constant, R, may be con-
sidered a characteristic temperature of the reac-
tion in question. In experiments designed to
evaluate E one usually varies the temperature
of the system (or surface) and plots of logarithm
of the observed reaction rate as a function of the
reciprocal surface temperature. The apparent

* Here ( is a dummy (integration) variable.

tWhich is a coordinate identical to  Z [cf. equation (14})
except based on the average coefficient St_, for the surface
up to location x.
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activation energy will therefore be*
E, = —R[d Inm/d(1/T,)]. (24)

In the limit E » RT,, the previous definitions
reveal that*

EJE =1+ (dIn#j/dIn 2). (25)

Thus, E, will depart from E whenever 1§ =
W/ pem departs from unity. Aside from the fact
that 77 depends parametrically upon By, this
result is formally identical to the corresponding
result for surface-catalyzed reactions. The reason
is simply that the new parameter By, is tem-
perature-independent.t However, consideration
of the apparent reaction order presents an inter-
esting new aspect, as outlined below.

If the reactant concentration in the feed, cg .
is systematically varied, the chemical reaction
will appear to be characterized by the reaction
order

n,=dlnm/dlncg, (26)

where m = iy, (Z; 1, Bgiee). Now one must
account for the fact that in addition to changing
Menem @ Change in cg , changes 7, not only be-
cause of its effect on Z (when n # 1), but also be-
cause of its effect on By [cf. equations (10, 11)].
accord with the chain rule one then finds

n,=n+ (n - 1)(6 In ﬁ/a In E)Bm,, = gonst

+ (0 In ﬁ/a In Bdiff)z'=const. (27)

In the absence of this last term we recall [30]
that the approach to diffusion control is always
characterized by an approach to apparent
first order kinetics.f This is not the case for

*In this, and all subsequent formulae containing
d In rh = dm/m, the absolute value of m is implied.

When E > RT then E,/E = d Inri/d In k,,, hence equation
(25) predicts the sensitivity of the observed reaction rate to a
change (or uncertainty) in the reaction-rate coefficient.

+In applying the present theory to the calculation of E,/E
it is assumed that the effective stoichiometry (hence, product
distribution) does not change with temperature level. In
regimes where changes in product distribution occur, By
would be temperature-dependent (through the quantity r
appearing in equation (10), see Discussion section).

1 For the case of concentration-independent Fick diffu-
sion coefficient.
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surface reactions with nonzero mass velocity
at the interface, as will be numerically illustrated
later on.

Since Bgyr is also independent of flow-rate
and reactor dimensions one finds that the
expressions for the dependence of reaction rate
on flow rate and wetted area are formally
identical to those cited in [34], ie. for two-
dimensional diffusion boundary layers which
grow according to dp_ooc x'/¢

ny=dlnm/dinU

= — [(w — 1)/w](dInn/dInz) (28)
and *
ng,=dlnm/din A
=1+ (1/w)(d In 7/d In Z). (29)

The presence of nonzero By will be seen to
have no effect on the asymptotic values (small
z and large Z) of d In #/d In Z. We therefore con-
clude that the Stefan-Nusselt flow does not
change the limiting values of ny and n, but only
the shape of the transition between their
limiting values. Thus, for example, if a surface-
catalyzed reaction rate in a given reactor
exhibits a variation with approach flow velocity
which ranges between U° (chemical control)
and U? (diffusion control) these same limiting
exponents are to be expected for reactions with
nonzero interfacial mass velocity.

ILLUSTRATIVE RESULTS

To illustrate the nature of the Stefan—Nusselt
flow effect on the transition from reaction-rate
control to diffusion control we concentrate
here on a particular case. Since the errors
inherent in the present approximate theory are
expected to be smallest for (i) turbulent bound-
ary-layer flow over nearly flat surfaces with
diffusional Prandtl numbers (v/D) near unity
and (ii) reactions whose true kinetic order, n,
is not too small, all illustrative numerical
results collected here (in the form of dimension-
less graphs) will pertain to the following choice

*For a two-dimensional surface d4 = dx.
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of parameters: n = 1, = 5, ie. to first-order
surface reactions in a fluid dynamic situation for
which 8- oc x* (hence, Stz oc x~ ). For con-
stant property turbulent boundary layers with
small streamwise pressure gradients the constant
b is estimated as 0-34, based on [44]. Calcula-
tions are then carried out for selected values of
the mass transfer parameter By (with results
shown here for By, = —1:0,* —05,0, 05, 10,
2-0, 40). A discussion of the magnitude of By,
encountered for some specific reactions of
current interest will be given in the Discussion
section.

Figure 3 shows the results for the normalized
distributions of both reactant concentration and
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of the boundary-layer constant b, and hence,
is similar (in these coordinates)* for both
laminar and turbulent boundary layers. Ex-
plicitly, for small z we find:

¢~ 1—(1+ Bygz (30)

n o~ 1 - n(l + Bdiff)z. (31)

In contrast, the product bBy; governs the large
z behavior, which is found to be

¢ ~ [(1 + bByz] " (32)
Correspondingly,
1~ [(1 + bByg)z] ™" (33)

T TT

L 1 | 1

TURBULENT BOUNDARY LAYER
FIRST ORDER SURFACE REACTION

gt

-0 10

zmkpcn Y [pete +S8.05 R 0)

F1G. 3. Normalized reaction-rate (and reactant-concentration) distribu-
tions along a flat plate.

reaction rate [these are identical for first order
reactions; cf. equation (15)], as obtained from
equation (16). Except for the singular case
(limit) By = —1, one notices a gradual decay
of reaction rate down the isothermal surface,
with large departures from local chemical
control occurring earlier in the case of large
values of the mass transfer By, It is interesting
to note that the small-z behavior is independent

* The limiting case. By =

) —1 is singular, and will be
discussed later on.

Thus, for any reaction order n, n ultimately
falls off like 1/z, with a spacing determined by
the factor (1 + bByy) ™ !. Corresponding results
for the reaction-rate function ¢ can be obtained
from equation (18).

Similar remarks can be made about the
integrated reaction-rate coefficient 7(Z; n, By;s),
shown in Fig. 4 (for the case w = 5, n = 1). For

* Note that in these coordinates the boundary-layer
growth parameter w does not appear explicitly in deter-
mining the distributions of reactant concentration and
reaction rate.
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F1G. 4. Reduction in overall reaction rate on a flat plate due to external
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small values of z the total reaction rate is not
much smaller than the chemically controlled
value, and

ii~1—=n(l+ By (w — Dz

This result (which does not contain b) is valid
for both laminar and turbulent boundary layers.
For very large values of Z, the bulk of the surface
is operating near the diffusion-controlled limit,
and, asymptotically* (as Z —» o)

i~ [(1 + bBye)z] ™! (35)

[cf. equation (33)]. The ratio, ¢, of the actual
total reaction rate to the rate which will be
obtained if local diffusion control prevailed
everywhere, is readily obtained from equation
(22). The relation between the two dimension-
less reaction rates, 7 and ¢, is shown in Fig. 5.
Since diffusion-controlled reaction rates can
often be calculated a priori, a knowledge of the
theoretical dependence of ¢ on z (through #)
can be used to infer the rate constant from
observed kinetic data in the intermediate regime.

(34)

* This result implies that 77 at a given value of Z(> 1) will
be approximately the same for both laminar and turbulent
boundary-layer situations, provided # is evaluated at the
same value of the product bB;; .

A reduction in the overall reaction rate due to
diffusional limitations is, of course, accompanied
by a reduction in the apparent activation energy
of the reaction. This correlation (between
E,/E and #) is shown in Fig. 6, again for the case
w = 5, n = 1. One notices that increasing B,
reduces the departure of E, from E that accom-
panies a given reduction in the absolute value
of the reaction rate.
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Fi1G. 5. Relation between the dimensionless reaction-rate
coefficients # and ¢.
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Perhaps the most interesting new phenome-
non to emerge in considering the effects of the
Stefan-Nusselt flow concerns the apparent
kinetic order of surface reactions. One normally
expects isothermal diffusional phenomena to
ultimately cause all reactions to masquerade as
first-order reactions, regardless of their true
kinetic order [4, 30]. This is not the case here
since the diffusion-limited rates depend on
Bgsr which itself depends (linearly) on the
reactant concentration in the feed. Figure 7
demonstrates the resulting behavior for surface
reactions which have a true kinetic order of
unity. One notices that in the diffusion limit
(¢ — 1) such reactions may appear to have
reaction orders which are greater than, or less
than, unity, depending on the nominal value of
By It is also clear from Fig. 7 that deviations
from the true kinetic order are not necessarily
greatest in the diffusion-controlled extreme.

DISCUSSION

To appreciate the importance of the effects
contained in the previous relations it is first
necessary to consider the magnitudes of the
parameters B, and b encountered in practice.
Values of the diffusion-limited blowing para-
meter By, are therefore collected below for a
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number of chemical systems, including oxida-
tion reactions and so-called chemical vapor-
plating systems. Likewise, suggested values of the
boundary layer (mass-transfer sensitivity) para-
meter b are summarized, and corrections for
the effects of pressure gradient and variable
properties (e.g. unequal molecular weights)
indicated. We then consider two particular
implications of the present theory; viz. (i) the
modification of profile drag on reactive solids,

g

04 F TURBULENT FLOW, n=| 1

oi L 1 L . 4

o2 o4 o6 o8 0

Pt gy
FiG. 7. Diffusional falsification of reaction order.

and (ii) the use of energy transfer to characterize
chemical surface reactions which are not thermo-
neutral. Previous work on the nature of the
transition between chemical control and dif-
fusion control for the surface combustion of
graphite, and the high-temperature oxidation of
molybdenum is criticized in the light of the
present theory, and the role of the Stefan-
Nusselt flow is clarified in each case. We con-
clude with a discussion of the expected accuracy
of the approximations introduced in the present
work, and areas in need of improvement and/or
generalization.
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THE MASS-TRANSFER PARAMETER B,

Values of B,y for representative chemical
surface reactions are collected below. Two
tables are given, Table 1 pertaining to reactants
which are undiluted (i.e. ¢z, = 1). Table 2
pertains to the values of By encountered for
various heterogeneous oxidation processes in
air (the ubiquitous oxidizer). In both tables we
include a column giving the ratio of the gaseous
product molecular weight, Mp, to the molecular
weight, M, of the fluid at the outer edge of
the diffusion boundary layer. As will be seen,
when this ratio departs appreciably from unity
it is necessary to modify the absolute value of b.
Note that two values of By are given for the
same reactants (R and S) depending on the
identity of the principal product P. In these

DANIEL E.

ROSNER

systems values of By, intermediate between the
extremes tabulated are therefore possible,
reflecting the simultaneous presence of both
stable products.

As already indicated, the present theory
can be generalized* to include vapor deposition
reactions [24] which yield several products
P,, P,,..., some of which are volatile and one
of which (identical to S) remains behind. Thus,
if r g of reactant R are needed to deposit 1 g of
nonvolatile product S, (r > 1) we find

Bgir = — Cr.oft (36)
[which, apart from the sign, is identical to

* Another generalization of interest is to the kinetics of
condensation, sublimation or dissolution, for which [39, 42]

Byigr = (5,0 eq cs. A —cs, eq)'

Table 1. Some values of By for surface reactions in streams of pure gaseous
reactant (cp , = 1, M, = My)

Surface Reactant Product(s) Mp/My Bt
S R P

Cls) 0,(9) CO(g) 0876 +0-751
C(s) 0.(9) CO,{g) 1375 +0-375
C(s) H,0(g) CO(g) + H,(g) 0-833 +0:667
Cls) CH,(g) C(s) + 2H,(g) 0125 —0-750
W(s) 0O,(9) WO,(g) 6-746 +574
W(s) 0,(9) WO,(g) 7-246 +383
W(s) Cly(g) WCl,(g) 3-593 +2:59
W(s) H,0(g) WOs(g) + 3H,(g) 3-301 +340
W(s) H,0(g) WO, + 2H,(g) 4068 +510
Mo(s) 0.(9) MoO,(g) 3998 +3:00
Mos) 0,(9) MoOs(g) 4-498 +2:00
Mo(s) Cly(g) MoCl,(g) 2:353 +135
Mo(s) H,0(g) MoOs(g) + 3H,(g) 2:082 +178
Ni(s) O,(g) NiO(g) 2335 +367
Ni(s) Cl,y(g) NiCl,(g) 1-830 +0-828
Ge(s) 0,(9) GeO(g) 2769 +454
Si(s) Cly(g) SiCly(g) 2:396 +0-198
Tr(s) 0.(g) Ir,05(g) 13:51 +3801
Ir(s) O, IrO;(g) 7-506 +400
Ta(s) O.(g) Ta,O4(s) — —100
Nb(s) O,(g) Nb,O4(s) — —1:00
Pt(s) H(g) H,(g) 2:000 0-000
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Table 2. Some values of By for surface oxidation in
air (R = O,(g), cp,. = 0231, M, = 28:97)

Surface Product MM, Bie
Cls) CO(g) 09669 +0-174
C(s) COyg) 1-519 +0-0868
W(s) WO,(g) 7451 +133
W(s) WO4(g) 8003 +0-887
Mo(s) MoO,(g) 4-417 +0-694
Mo(s) MoOs(g) 4969 +0463
Ni(s) NiO(g) 2:5719 +0-849
Ir(s) Ir,054(9) 14:92 +1-85
Ir(s) IrO4(g) 8291 +0-927
Ta(s) Ta,04(s) — —0-231
Nb(s} Nb,Os(s) — —0231

equation (10)]. As an example, consider the
deposition of solid graphite [22] by passing a
stream of methane gas over a heated mandrel.
In this case the principal chemical reaction may
be represented as

CH,(g) = C(s) + 2H,(g). (37

To deposit 12-00 g of carbon one must pyrolyze
16 g (=Mcy,) of methane, hence r = 1-333. If
the gas stream passing over the mandrel is
pure methane, we then have By = — 0-750.
Similar examples occur in the deposition of
tungsten from WFy(g)-containing gases, the
deposition of boron from BBr,(g)-containing
gases, etc.*

THE BOUNDARY-LAYER CONSTANT b

Many experimental and theoretical investiga-
tions have been concerned with the effects of
interfacial mass transfer on the magnitude of
convective heat- and mass-transfer coefficients.
Since not all of the correlations obtained can be
cast in the form of equation (7) over the entire
range of the parameter B(—1 < B < ) it is
convenient to compare the available findings

* In using the gaseous halides one commonly introduces
hydrogen as well, to tie up the reactive halogen [24].
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for B? < 1. This is done in Table 3 for the case
of two-dimensional constant-property boundary
layers in the absence of large streamwise velocity
gradients. For treating the effects of variable
properties, velocity gradient [46], etc., the

Tuble 3. Values of the parameter b for B near zero (constant
properties, zero pressure gradient)

Boundary layer Pry b Ref.
laminar >1 0-566 [19, 20]
laminar o(1) 0724 {19, 20]
laminar o) 073 [11]
laminar o(1) 071 [44]
turbulent o) 0-37 [11]
turbulent o(1) 0-34 [44]
turbulent o(1) 016 [14]
turbulent o(1) 0-50 [39, 42]
turbulent o(1) 0414 [18]

approach that has been taken by most investiga-
tors is to suitably modify the values of b given
in Table 3. Upon surveying available predic-
tions for laminar boundary layers in the absence
of chemical reaction, Eckert [11] suggested a
relation equivalent (in the present notation) to

bete = blpe/pred)(l — 3B (M /Mp).  (38)

Here p,.; is a reference density of the approach
fluid (computed at a static temperature about
mid-way between the approach stream tempera-
ture and the surface temperature), f is a genera-
lized velocity-gradient parameter* (taking on
the values O for flat plate flow, 1 for two-dimen-
sional stagnation-point flow and 1 for axially
symmetric stagnation-point flow) and Mp is the
molecular weight of the transferred fluid. For
turbulent boundary-layer flow a similar relation
was suggested [11]:

beff = b(pe/pref)(Me/MP)il (39)

* For two-dimensional boundary-layer flow
B = 2m/m + 1),

where m = dIn u,/d In x.
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where the absence of the factor f§ reflects an
insensitivity of the turbulent boundary layer to
nonzero values of the pressure-gradient para-
meter f. While those correlations will probably
require refinement in the light of new informa-
tion (obtained for extreme property variations)
it is clear that the effective value of b is increased
for the flow over heated surfaces (p,; < p,) at
which lightweight products are generated
(Mp < M,). Reference to Tables 1 and 2 shows
that the largest values of By, correspond to the
attack ofrelatively high-molecular-weightsolids,
and hence the generation of heavy-product
molecules (e.g. the oxidation of iridium). In
these cases b, and hence the product bBgy,
should be reduced in accord with the above-
mentioned molecular weight effect.

It should be reiterated that the relation
St/Sty_o = (1 + bB)~ ! exploited herein cannot
be used for values of B near the “‘suction”
limit, —1. For laminar boundary layers on
surfaces of arbitrary shape, Acrivos [2] has
shown that in this limit the proportionality
constant St - (1 + B)? contains all of the effects
of variable properties.

With regard to the need for a rough criterion
for the importance of the Stefan-Nusselt flow,
the film-theory relation [42]

St/Sty_o ~ [In(1 + B)}/B (40)

[which implies b = 4 (B* < 1)] suggests itself.
Thus, we can state that unless [In (1 + Bg]/
Byier is near unity, or diffusional limitations are
negligible, it will be necessary to account for
the Stefan—Nusselt flow effect in the analysis of
heterogeneous reactions.

PROFILE DRAG ON REACTING SURFACES

In heterogeneous combustion systems it has
frequently been reported that burning and/or
evaporating droplets do not accelerate at the
rate which would be predicted from available
nonreactive sphere-drag data [39]. More gener-
ally, as a consequence of the Stefan—Nusselt
flow, we can expect both the profile- and form-
drag on reacting surfaces to be different from

DANIEL E. ROSNER

the corresponding drag on nonreactive surfaces
of the same geometric shape. Form-drag altera-
tion will not be considered here, although it
is clear that changes in the location of boundary-
layer separation and detachment can produce
large changes in the prevailing pressure distribu-
tion. On the other hand the change in profile
drag (due to the integrated effect of the compo-
nent of the local frictional drag in the direction
of flow) can be estimated using the theory
presented earlier, together with Reynolds
analogy [5]. This extension is outlined below,
with particular attention to the change in
profile drag associated with the transition from
chemical control to local diffusion control.

For Prp ~ 1, in the absence of streamwise
pressure gradients, the simplest form of Reynolds
analogy is applicable, and may be concisely
stated :*

S, = 1 x)/paid = St (41)
where ¢, is the dimensionless skin friction
coefficient. Since this result holds with or
without mass transfer at the interface, c;/c, 5_¢
may be taken as equal to St/Stz., [cf. equation
(7)]. Utilizing these properties, we consider the
integrated drag force (per unit depth) on a flat
plate:

X

2(x) = [ 1,(8)d¢

0]

(42)

and examine the ratio 2(x)/Zg-o(x). In this
way we find that, for either laminar or turbulent
boundary-layer flow, the alteration in overall
drag bears a simple relation to the reaction-rate
coefficient @(=r/rig;y) introduced earlier. The
result is

D/Dp-o = [1 + bByigs (1 — $)JA1 + bByigr)
(43)

which is seen to vary monotonically between

* The definition of ¢, given here corrects a typographical
omission (the factor ) in the Nomenclature of [29].
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Fi1G. 8. Drag alteration on reactive surfaces in the transition regime.

unity (when ¢ = 0) and (1 + bByg)~ ' (when
¢ = 1). This transition behavior is shown in
Fig. 8, for the case of turbulent boundary-layer
flow.* It will be recalled that the abscissa, Z,
contains the reaction-rate constant k, as a
multiplier. Thus, for example, if the product
bB,; were sufficiently large, it is conceivable
that a measurement of actual drag reduction
could provide an estimate of ¢ and, hence,
other reaction-rate parameters of interest. Con-
versely, relations of this kind might be used to
estimate the alteration in pressure drop anti-
cipated within tubular reactors and similar
equipment.

ENERGY TRANSFER REQUIREMENTS FOR
REACTING SURFACES

In addition to changing the profile drag,
heterogeneous chemical reaction will generally
alter the amount of power required to maintain
the surface at any prescribed, elevated tempera-
ture T,(>T,). This altered power requirement
can be calculated using the present theory
provided internal heat conduction renders the
surface temperature uniform. Heterogeneous

* Predictions of the reduction in drag for laminar boun-
dary-layer flow over a flat plate with first-order surface
reaction have been made by Kulgein [17].

chemical reaction alters the energy requirement
in two ways: (i) by altering the local Stanton
number for heat transfer (as a result of the
Stefan—Nusselt flow)* and (ii) by generating
(or absorbing) heat locally at the rate —wjy
The relative importance of the latter mechanism
is found to be governed by a dimensionless
exothermicity parameter, cg Q/c,(T, T,),
which appears here for the first time. We consider
here the heat balance in the absence of appreci-
able radiation loss, and for values of the Lewis
number (Pr/Prp) near unity. Combining the
energy and species balance with equation (7),
for the flat plate geometry we find

2/95-0 = (2/D5-0)
— [cr, Q/c(T,, — T)] $ (1 + bBye) ™' (44)

a result which likewise applies to either laminar
or turbulent boundary-layer flow. One notes
here the individual contributions of mechanisms
(i), (i) above—the alteration in convective
heat transfer being identical to the drag altera-
tion 2/%Pg5-, already given by equation (43).

* It is sometimes stated, or implied, that the Stefan—
Nusselt flow destroys the analogy between convective heat
transfer and mass transfer. This is not the case, as has recently
been reiterated by W. E. Stewart [46]. Mass transfer merely
becomes analagous to heat transfer in the presence of blowing
or suction at the wall.
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Because of the presence of the additional term
(weighted by the heat release parameter) the
change in power requirement can be used as a
sensitive indicator® of the reaction rate coef-
ficient ¢ = rir/rg;e (and, hence, the true kinetics)
whenever the remaining parameters in equation
(44) are independently measurable or estimable.
This result can be written in the simple inverted
form: 1

‘5 = [1 - (-@/QB=0)]/[1 - (-Q/QB=0)diff] (45)

which clearly brings out the relation between the
reaction rate coefficient ¢ and the power
requirement ratio 2/2p_,.

EFFECT ON TRANSITION-REGIME
PREDICTIONS AND DIFFUSION
CORRECTIONS

Among other assumptions, several investiga-
tors have (implicitly) neglected the effect of
the Stefan—Nusselt flow in cases where non-
negligible systematic errors may be incurred.
Since incorporation of the dominant effects of
this flow would seem to entail no appreciable
difficulty, cruder approximations cannot be
justified on the grounds of their simplicity
alone. Two specific examples will be critically
considered here. The first deals with predictions
of the ablation rate of graphite in the transition
regime between chemical control and diffusion
control. The second deals with the proper
treatment of rate data obtained in the presence
of diffusional limitations.

Accurate calculations of the diffusion-
limited ablation rate, rig;y, have been reported
for graphite in air [35]. However, since this
upper limit is frequently not achieved in practice
it is necessary to incorporate kinetic limitations,
by availing oneself of true reaction-rate data,

* When the two terms in equation (44) act in the same direc-
tion [ie. exothermic reactions forming volatile products
(Baes > 0), or endothermic reactions forming adherent
products (B < 0)].

1 A similar result was obtained by the writer in an analysis
of catalytic heat exchangers [34].
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say, in the form rit}y (T, Po,. ) It Was origin-
ally recommended [23] that the required “in-
terpolation” be done in accord with the familiar
resistance-additivity result

U = (1) pem) + (1/Mgiee).

This equation not only neglects the effect of the
Stefan—Nusselt flow, but it also ignores the
fact that the true kinetic order of the graphite
reaction is frequently found to be % (whereas
equation (46) implies n = 1).* At the suggestion
of the writer [28] equation (46) was readily
altered to account for the effect of nonunity
reaction order, however, an additional approxi-
mation was madet to obtain the simple result
[35]: i

Vi = (1/em) + (1/ringto).

Using the formalism of the present paper, it is
now possible to rapidly assess the accuracy of
this equation as applied to the ablation of
graphite in air (B = 0174 if CO(g) is the
dominant reaction product,] see Table 2).
The result is shown in Fig. 9 for the case of a
two-dimensional stagnation point flow (b =
0-71(3)*). The coordinates m’/ri} o and W)y m
iy are, in the present notation, equivalent to
nand (1 + bByy)z, respectively.§ The maximum
error is found to be about 18 per cent, most of
which is attributable to the assumption men-
tioned in the footnote rather than neglect of the
Stefan—Nusselt flow per se. Interestingly enough,
this maximum error (in these coordinates)
remains bounded as By — o0, and cannot
exceed about 31 per cent. For the ablation of

(46)

(47)

* Similar remarks would apply to the expressiont = t.pem
+ taic commonly used to describe the time required to burn
carbon particles ([39], p. 110).

t Viz. ritgier o€ (Poy e — Pos, w)? (cf. Scala, S. M., Chapter 16,
p. 431, Developments in Heat Transfer, W. M. Rohsenow,
ed., M.LT. Press, 1964) which is not justified.

1 The nature of the transition in the presence of both
CO,(g) and COf(g) as primary reaction products has been
considered by Welsh and Chung [47].

§ The stagnation point (x — 0) formally corresponds to the
limit (@ — o0} i.e. the boundary layer thickness (hence z) is
finite and locally constant there. In this limit y = #, z = Z.
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graphite in pure oxygen (By = 0-75) the
corresponding error is about 21 per cent. In
each case equation (47) is seen to systematically
overestimate the actual ablation rate m".

Our second example is drawn from the work
of Modisette and Schryer [21] on the oxidation
rate of high temperature molybdenum in both
air and 21-59, O,/78:5% He gas mixtures.*
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F1G. 9. Comparison of alternate predictions of the transition

between chemically controlled and diffusion-controlled
graphite ablation.

These authors - correct their apparent rate
data (k,, ,, E,) for the effects of oxygen diffusional
limitations using a procedure which, among
other things [32], neglects the effect of the
Stefan—Nusselt flow. Since the diffusion correc-
tions are not small (E,/E ~ 0-65 for the 1330°K-
1670°K data treated most extensively) it is of
interest to inquire how the reported value of the
true activation energy (E = 21 Kcal/mole) would
be influenced by the Stefan—Nusselt flow effect.
Unfortunately, this cannot be done accurately
since the experiments were performed at Rey-
nolds numbers below which the laminar
boundary-layer values of the constant b (cf.
Table 3) are applicable. However, if use is made
of the present theory for laminar boundary

* Interestingly enough, this substitution (He for N,) not
only affects the diffusivity of O, through the carrier gas, it
also increases By [for the production of MoO,(g)] from
0-462 to 1-37. This may explain why the increase in reaction
rate associated with the substitution of N, by He was some
16 per cent less than that anticipated [21] neglecting the
Stefan—Nusselt flow effect.

4L
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layers with assumed first order kinetics* (n = 1)
it appears that the effect of the Stefan—Nusselt
flow is to increase diffusion correction (and
hence, the reported activation energy) for the air
oxidation results by almost 10 per cent. In the
case of molybdenum oxidation by 2159
0,/78:5% He mixtures the effect is greater
than 25 per cent. Neglect of systematic effects of
this magnitude in a parameter as important as
the true activation energy can clearly lead to
enormous errors in even modest extrapolations
of such rate information to higher temperatures.

ACCURACY LIMITATIONS, REFINEMENTS AND
EXTENSIONS

The accuracy of the approximate method
exploited here depends in a rather complex
way on the many fluid-dynamic and chemical-
kinetic parameters that enter the results. Pend-
ing comparisons with exact solutions to special
cases (which do not yet exist for this class of
problems) one can only estimate the regimes in
which the accuracy is likely to break down
based on previous work on related problems
[30] and on a posteriori comparisons using data
from analogous problems in fluid mechanics and
heat transfer [16]. Indeed, it is hoped that the
present work, which, perhaps, gainsin generalityt
what is lost in accuracy, will stimulate more
detailed investigation of this class of coupled
chemical kinetic—convective mass-transfer prob-
lems.

At a fixed value of the parameter By the
accuracy should exhibit behavior similar to
that encountered in the writer’s previous in-
vestigations on surface-catalyzed reactions [27,
29, 30, 34]. In that case (By;;; = 0)the approxima-
tions exploited here are best for turbulent

* Actually, the true reaction order is probably not quite
unity under these conditions [31, 32].

+ For example, while boundary-layer concepts and results
have been extensively invoked, the present approach should
prove useful even when (thin) boundary-layer theory, in
the conventional sense, breaks down.

1 The present approach should be extremely accurate when
applied locally to symmetrical stagnation-point situations
(where local similarity is exact) provided the values of B
are such that equation (7) for St/Stz- is accurate.
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boundary layers with Prp = O(1), and for
reaction orders near unity or larger. The
accuracy is poorest for small pressure gradient,
laminar boundary layer flow with Prj, — 0 and
for very small reaction orders. Moreover, these
errors are most serious in the computation of
quantities like E /E, n,, etc., since they involve
logarithmic derivatives of # [cf. equations (25,
27-29)]. For By > 0 we expect these errors to
be larger than those already discussed, owing
to the increased sensitivity of transfer coefficients
to a spatially variable diffusional driving force
in the presence of blowing [16]. The local
similarity treatment for the effects of blowing
is also expected to be most accurate for turbulent
boundary layers.

The difficulties encountered using equation
(7) near By = — 1 have already been men-
tioned, hence, the curves labeled* By = — 1
herein should not be used quantitatively, but
merely used as an indication of trends as one
begins to approach the suction limit. It is clear
from equation (16) that the case By = — 1 is
singular even in the present formulation, despite
the fact that St/St,_,, predicted by equation (7)
remains finite as By, — — 1. Variable property
effects will probably be most important in the
suction limit as well [2].

While the theory presented is a steady-state
theory, it may be applied to time-varying
problems (e.g. shape changes, reactivity changes)
provided the time scale of the variation of
interest is sufficiently large (compared with the
“transit time” L/U) and provided other funda-
mental assumptions (e.g. k,, independent of the
distance x) are not simultaneously violated. In
such cases the time, ¢, will merely play the role
of a parameter.

Owing to its simplicity, the present formula-
tion is seen to lend itself well to (i) preliminary
studies of parametric dependencies, (ii) the
definition of problems worthy of more careful
investigation, or (iii) making quantitative esti-
mates of the kind given above for the oxidation

* The shadings in Figs. 3-8 indicates that smaller values of
By are of no physical interest.
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of graphite and molybdenum. In this regard
work is currently being done on extension of the
present theory to the so-called non-isothermal
case [30], in which both diffusion and heat-
transfer limitations determine steady-state sur-
face temperatures, reaction rates, etc. More
accurate computations of special cases are also
in progress to assess the validity of the underlying
approximations (cf. also [17]).

CONCLUSIONS

A simple algebraic model has been adopted
which, in a unified way, reveals the dominant
effects of the Stefan—Nusselt flow on the apparent
kinetics of heterogeneous reactions in the
transition regime between chemical control and
reaction-rate control. These effects will be
important whenever the reaction is not chemi-
cally controlled and the quantity [In (1 + By)]/
B¢ departs significantly from unity, where
B¢ is a diffusion-limited mass-transfer para-
meter (—1 < Byye < ) whose magnitude is
directly proportional to the free stream reactant
mass function. The apparent kinetics for reac-
tions of arbitrary kinetic order are readily
obtained for a variety of convective flow situa-
tions in terms of natural dimensionless co-
ordinates of the problem. Illustrative results
have been presented [in the range (— 1 < Byr <
4)] for turbulent diffusion boundary-layer flow
along flat surfaces being attacked in accord with
first-order kinetics by a reactant present in the
free stream. Several consequences of the theory
of particular interest are: (i) The Stefan—Nusselt
flow not only affects the nature of the transition
between known asymptotic values (e.g. apparent
activation energy, dependence of reaction rate
on flow velocity and on wetted-surface area,
etc.) for chemical control and diffusion control,
but it can also affect the asymptotic values
themselves (as in the case of the apparent
reaction order in the diffusion limit). Thus,
diffusional limitations do not cause all hetero-
geneous chemical reactions to masquerade as
first-order reactions when the Stefan—Nusselt
flow effect is appreciable. (ii) In any particular
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flow configuration there will be a relation
between the fluid-dynamic drag on the sur-
face and the true kinetics of the surface reaction,
which for sufficiently large absolute values
of By, would be measurable. (iii) For sur-
face reactions which are not thermoneutral
there will be a more sensitive relation between
the power required to maintain a surface at
a prescribed surface temperature and the true
kinetics of the reaction at that temperature.
This relation can be cast in a form identical with
that pertaining to surface-catalyzed reactions.
Representative values of the parameter By
encountered in practice have been assembled
(cf. Tables, 1, 2) and specific applications of the
theory to the oxidation of graphite and molyb-
denum in air reveal the extent of the errors
typically committed in neglecting the Stefan-
Nusselt flow, and illustrate the way in which the
present theoretical development and correla-
tions can be utilized in a straightforward way.
It is hoped that the present theory, which
attempts to provide a useful overall conceptual
framework, will stimulate more detailed in-
vestigation of particular cases of practical or
theoretical interest.
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Résumé—L ’effet de la vitesse massique interfaciale normale aux surfaces sur-lesquelles se produit une
réaction hétérogéne sur la cinétique apparente de ces réactions est étudié d’une fagon quantitative. Un
modele algebrique simple est présenté qui permet d’obtenir les coefficients non dimensionnels de vitesse
de réaction dans toute la gamme allant du contréle (“‘chimique”) de la vitesse de réaction au contrdle
par la diffusion pour des réactions irréversibles en une seule étape d’ordre cinétique arbitraire. Des résultats
sont présentés comme exemple dans le cas de couches limites turbulentes sur des surfaces planes sur-
lesquelles se produit une réaction du premier ordre. L'effet de cet écoulement interfacial (écoulement de
Stefan—Nusselt) est sensible toutes les fois que la vitesse de réaction n’est pas complétement contrdleé
chimiquement et que la quantité [In (1 + Byy)]/Bay différe d’une fagon appréciable de 'unité, By
étant un paramétre sans dimensions pour le transport de masse contrdlé par la diffusion qu’on peut
obtenir a priori en fonction de la fraction massique du réactif dans le fluide d’alimentation et les relations
stoechiométriques de la réaction. On trouve que ’écoulement de Stefan-Nusselt:

1° bat en bréche I'idée ancienne que les limitations produites par la diffusion conduisent en dernier lieu
toutes les réactions superficielles a se déguiser en réactions du premier ordre;

2¢ introduit une relation entre la trainée de profil sur les surfaces en réaction et la cinétique réelle de la
réaction, et

3° laisse sans changement la forme d’une relation, qui pourrait étre utile, entre la puissance nécessaire
pour maintenir une surface en réaction a une température fixée et la cinétique réelle de la réaction chimique
a cette température. Les applications de la théorie a des réactions hétérogénes spécifiques (par ex. I'oxyda-
tion, la chloruration, le plaquage chimique par une vapeur) sont facilitées par la compilation des valeurs
représentatives du paramétre de transport de masse By Les erreurs commises en négligeant I'écoulement
de Stefan—Nusselt sont discutées pour deux cas d’intérét courant, c’est-a-dire I’'oxydation a haute tempéra-
ture du graphite et du molybdéne dans Iair. Les résultats de la théorie sont présentés et discutés de telle
fagon que leur généralité est mise en valeur aussi bien que les conditions physicochimiques sous-lesquelles

des processus simples de calculs sont vraisemblablement acceptables.

Zusammenfassung—Der FEinfluss der Trennschichtstoffgeschwindigkeit senkrecht zu Oberflichen mit
heterogenen Reaktionen wird quantitativ untersucht. Fin einfaches algebraisches Modell wird entwickelt,
‘das die Ermittlung aller einschligigen, dimensionslosen Koeffizienten der Reaktionsgeschwindigkeit
erlaubt fiir den gesamten Bereich von reaktionsgeschwindigkeits- (‘““‘chemischen’) bis diffusionskontrol-
lierten einstufigen, irreversiblen, heterogenen Reaktionen beliebiger kinetischer Ordnung. Anschauliche
Beispiele werden angegeben fiir den Fall turbulenter Grenzschichten an ebenen Oberflichen bei Reaktionen
erster Ordnung. Der Finfluss dieser Trennschichtstrémung (des Stefan-Nusseltstroms) erweist sich stets
dann bedeutsam, wenn die Reaktionsgeschwindigkeit nicht vollstindig chemisch kontrolliert wird und
die Grosse [1n(1 + Byiry)]/Baire wesentlich von eins abweicht. Dabei ist By, ein diffusionskontrollierter,
dimensionsloser Stofftransportparameter, der a priori abhiingig vom reagicrenden Stoffanteil im Zustrom
und der Reaktionsstéchiometrie erhalten werden kann. Es erweist sich, dass der Stefan-Nusseltstrom
(i) die hergebrachte Ansicht zerstort, dass Diffusionsbeschriankungen schliesslich alle Oberflichenreak-
tionen als Reaktionen erster Ordnung erscheinen lassen (ii), eine Verbindung zwischen dem Profilwider-
stand an reagierenden Oberflichen und der wirklichen Kinetik der Reaktion herstellt und (iii) die Form
einer moglicherweise niitzlichen Beziehung zwischen der erforderlichen Energie zur Aufrechterhaltung
einer vorgeschriebenen Temperatur an der reagierenden Oberfliche und der wirklichen Kinetik der
chemischen Reaktion bei dieser Temperatur unverindert lisst. Anwendungen der Theorie auf spezifische
heterogene Reaktionen (z.B. Oxydation, Chlorierung, chemische Dampfplattierung) werden durch die
Zusammenstellung représentativer Werte des Stoffiibergangsparameters By, erleichtert. Die Fehler, die
durch Vernachlidssigung des Stefan—Nusseltstromes begangen werden, sind an Hand zweier gegenwirtig
interessanter Fille diskutiert, nimlich der Hochtemperaturoxydation von Grafit und Molybdin in Luft.
Die Ergebnisse der Theorie werden so angegeben und diskutiert, dass ihre Allgemeingiiltigkeit wie auch
die physiko-chemischen Bedingungen betont werden, unter denen einfache Rechenverfahren annehmbar
erscheinen.
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Annoramua—Hccnenyerca BaMaHNe MACCOBOR CKOPOCTH HA I'paHuie pasiesna (as, HOPMAIb-
HOIl K NMOBEPXHOCTH, IAe NMPOTEKAIOT reTepOreHHHbe peaKlnM, HA ABHYI0 KUHETHKY TaKMX
peaknu#t. Cosmana npocrad axrefpamyecKas MOMeNb, KOTOPAA MO3BOJAET IOIYYMTH BCE
HeoOxonuMbie GeapasMEpHile KoaPUIMEHTH CKOPOCTH PEAKIUMHM B MIMPOKOM AMANAB0HE OT
YIIPaBJIEHUA CKOPOCTBIO PeaKIUM («XMMHYecKOl») mo ympasienus puddysueit gna omuo-
CTYMEHYATHX IeTEepOreHHBHIX PeaKiuit ¢ KMHeTHKON IPOU3BOJBHOrO MOpAgKa. IIpMBOXATCA
PesyJabTaTH MCCIEeNOBAHUA TYpPOYJIeHTHBIX IOTPAHMYHBIX CJI0E€B HA ILIOCKON! IOBEPXHOCTH
UIA Cay4yas Peaknuy IepBOro MOPAAKA. YCTAHOBIEHO 3HAYMTENbHOE BJIMAHUE IOTOKA
Crepana-HyccenpTa MisA yCuoBui, KOrA2 CKOPOCTH PEAKLMM HE YNPABIAETCH MOJHOCTHIO
xummudeckn M BenuunHa [In(1 + Bairr)l/Bairt CyUIecTBEHHO OTAMYAeTCA OT eUHHUIEL. 3[ech
Bairr GespasMepHblif IapaMeTp MaccooGMeHa mp® ympaBieHdu guddysueit, BrpamenHbllt
a priori 4epea MAaccOBhle KOHLEHTPALMU M CTEXMOMETDHMIO peaKuuu. BBUI0 HaleHo, 4To
npencrasienune o noroke Credana—Hyccenpra nosBoasier: (1) oTkasaTbca OT OCBANIEHHOTO
BeKaMU B3rIAfa, uYto qu@@ys3uoHHbIe OrPAHNYEHNA, B KOHIle KOHIOB, BH3HIBAIOT MACKUPOBKY
BCeX MOBEPXHOCTHBIX PeaKUUil MO peaKkIuu NepBoro MOPARKA, (2) yCTAaHOBUTH CBABH MEMIY
npodUIBHEIM CONMPOTHBIICHUEM HA PEATHPYWOUINX MOBEPXHOCTAX U HCTHHHON KHHETHHON
peakuuu u (3) OCTABUTh HEM3MEHHOH (OPMY IIOJIE3HOTO COOTHOLICHWA MEMLY DHEpruei,
HeoOXomuMoli [JIs MONep:KAHNA 3aJaHHON TeMmepaTypsl pearupyiouieil IOBEPXHOCTH, U
HMCTUHHON KUHETHMKOW XUMHYeCKOM peakuuu npu 3Tolt Temmneparype. Ilpumenenue sTol
TEOPUU K OTNPEJleJICHHbIM IreTepOTeHHBIM PeaKIMAM/HAPUMeD, OKHCIEHHUIO, XJIOPUPOBAHUIO,
HAHECEHNI0 XMMUUYECKUX TapoB/oGaerdeno 6iarogaps CHCTEMATHIMPOBAHHBIM XAPAKTEPHBIM
BeIMYMHAM mnapamerpa Maccoofmena Bairr. PasfupawoTca morpemHoctd, 00YCIOBIEHHBIE
npenebpe:kenuem mnorokom Credana—Hyccenbra paAa ABYX mnpeicTaBiafoUMX HHTEpeC
CIyYaeB, a MMEHHO, BHICOKOTEMIIEDATYPHOI'0 OKUCJIeHUA rpadura u MonubaeHa B BO3LYXeE.
ABann3 TeopeTMYECKNX PE3YNBTATOB HOCTPOEH TAKMM 00pasoM, 4TOGL HOTYEPKHYTH X
ofuit xapaxTep, a TakmKKe YCTAHOBHTb (U3MKO-XUMUYECKHE YCJIOBHA, YNpoljaloliue
pacdersl.
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